2,397 research outputs found

    Noncoding Sequences Near Duplicated Genes Evolve Rapidly

    Get PDF
    Gene expression divergence and chromosomal rearrangements have been put forward as major contributors to phenotypic differences between closely related species. It has also been established that duplicated genes show enhanced rates of positive selection in their amino acid sequences. If functional divergence is largely due to changes in gene expression, it follows that regulatory sequences in duplicated loci should also evolve rapidly. To investigate this hypothesis, we performed likelihood ratio tests (LRTs) on all noncoding loci within 5 kb of every transcript in the human genome and identified sequences with increased substitution rates in the human lineage since divergence from Old World Monkeys. The fraction of rapidly evolving loci is significantly higher nearby genes that duplicated in the common ancestor of humans and chimps compared with nonduplicated genes. We also conducted a genome-wide scan for nucleotide substitutions predicted to affect transcription factor binding. Rates of binding site divergence are elevated in noncoding sequences of duplicated loci with accelerated substitution rates. Many of the genes associated with these fast-evolving genomic elements belong to functional categories identified in previous studies of positive selection on amino acid sequences. In addition, we find enrichment for accelerated evolution nearby genes involved in establishment and maintenance of pregnancy, processes that differ significantly between humans and monkeys. Our findings support the hypothesis that adaptive evolution of the regulation of duplicated genes has played a significant role in human evolution

    Reticulate evolutionary history and extensive introgression in mosquito species revealed by phylogenetic network analysis

    Get PDF
    The role of hybridization and subsequent introgression has been demonstrated in an increasing number of species. Recently, Fontaine et al. (Science, 347, 2015, 1258524) conducted a phylogenomic analysis of six members of the Anopheles gambiae species complex. Their analysis revealed a reticulate evolutionary history and pointed to extensive introgression on all four autosomal arms. The study further highlighted the complex evolutionary signals that the co-occurrence of incomplete lineage sorting (ILS) and introgression can give rise to in phylogenomic analyses. While tree-based methodologies were used in the study, phylogenetic networks provide a more natural model to capture reticulate evolutionary histories. In this work, we reanalyse the Anopheles data using a recently devised framework that combines the multispecies coalescent with phylogenetic networks. This framework allows us to capture ILS and introgression simultaneously, and forms the basis for statistical methods for inferring reticulate evolutionary histories. The new analysis reveals a phylogenetic network with multiple hybridization events, some of which differ from those reported in the original study. To elucidate the extent and patterns of introgression across the genome, we devise a new method that quantifies the use of reticulation branches in the phylogenetic network by each genomic region. Applying the method to the mosquito data set reveals the evolutionary history of all the chromosomes. This study highlights the utility of ‘network thinking’ and the new insights it can uncover, in particular in phylogenomic analyses of large data sets with extensive gene tree incongruence

    Gene Family Evolution across 12 Drosophila Genomes

    Get PDF
    Comparison of whole genomes has revealed large and frequent changes in the size of gene families. These changes occur because of high rates of both gene gain (via duplication) and loss (via deletion or pseudogenization), as well as the evolution of entirely new genes. Here we use the genomes of 12 fully sequenced Drosophila species to study the gain and loss of genes at unprecedented resolution. We find large numbers of both gains and losses, with over 40% of all gene families differing in size among the Drosophila. Approximately 17 genes are estimated to be duplicated and fixed in a genome every million years, a rate on par with that previously found in both yeast and mammals. We find many instances of extreme expansions or contractions in the size of gene families, including the expansion of several sex- and spermatogenesis-related families in D. melanogaster that also evolve under positive selection at the nucleotide level. Newly evolved gene families in our dataset are associated with a class of testes-expressed genes known to have evolved de novo in a number of cases. Gene family comparisons also allow us to identify a number of annotated D. melanogaster genes that are unlikely to encode functional proteins, as well as to identify dozens of previously unannotated D. melanogaster genes with conserved homologs in the other Drosophila. Taken together, our results demonstrate that the apparent stasis in total gene number among species has masked rapid turnover in individual gene gain and loss. It is likely that this genomic revolving door has played a large role in shaping the morphological, physiological, and metabolic differences among species

    Very Few RNA and DNA Sequence Differences in the Human Transcriptome

    Get PDF
    RNA editing is an important cellular process by which the nucleotides in a mature RNA transcript are altered to cause them to differ from the corresponding DNA sequence. While this process yields essential transcripts in humans and other organisms, it is believed to occur at a relatively small number of loci. The rarity of RNA editing has been challenged by a recent comparison of human RNA and DNA sequence data from 27 individuals, which revealed that over 10,000 human exonic sites appear to exhibit RNA-DNA differences (RDDs). Many of these differences could not have been caused by either of the two previously known human RNA editing mechanisms—ADAR-mediated A→G substitutions or APOBEC1-mediated C→U switches—suggesting that a previously unknown mechanism of RNA editing may be active in humans. Here, we reanalyze these data and demonstrate that genomic sequences exist in these same individuals or in the human genome that match the majority of RDDs. Our results suggest that the majority of these RDD events were observed due to accurate transcription of sequences paralogous to the apparently edited gene but differing at the edited site. In light of our results it seems prudent to conclude that if indeed an unknown mechanism is causing RDD events in humans, such events occur at a much lower frequency than originally proposed

    Ancient and Recent Positive Selection Transformed Opioid cis-Regulation in Humans

    Get PDF
    Changes in the cis-regulation of neural genes likely contributed to the evolution of our species' unique attributes, but evidence of a role for natural selection has been lacking. We found that positive natural selection altered the cis-regulation of human prodynorphin, the precursor molecule for a suite of endogenous opioids and neuropeptides with critical roles in regulating perception, behavior, and memory. Independent lines of phylogenetic and population genetic evidence support a history of selective sweeps driving the evolution of the human prodynorphin promoter. In experimental assays of chimpanzee–human hybrid promoters, the selected sequence increases transcriptional inducibility. The evidence for a change in the response of the brain's natural opioids to inductive stimuli points to potential human-specific characteristics favored during evolution. In addition, the pattern of linked nucleotide and microsatellite variation among and within modern human populations suggests that recent selection, subsequent to the fixation of the human-specific mutations and the peopling of the globe, has favored different prodynorphin cis-regulatory alleles in different parts of the world

    New Methods to Calculate Concordance Factors for Phylogenomic Datasets

    Get PDF
    We implement two measures for quantifying genealogical concordance in phylogenomic data sets: the gene concordance factor (gCF) and the novel site concordance factor (sCF). For every branch of a reference tree, gCF is defined as the percentage of “decisive” gene trees containing that branch. This measure is already in wide usage, but here we introduce a package that calculates it while accounting for variable taxon coverage among gene trees. sCF is a new measure defined as the percentage of decisive sites supporting a branch in the reference tree. gCF and sCF complement classical measures of branch support in phylogenetics by providing a full description of underlying disagreement among loci and sites. An easy to use implementation and tutorial is freely available in the IQ-TREE software package (http://www.iqtree.org/doc/ Concordance-Factor, last accessed May 13, 2020).This work was supported by National Science Foundation (Grant No. DEB-1936187 to M.W.H.), an Australian National University Futures Grant (to R.L.), and an Australian Research Council (Grant No. DP200103151 to R.L., B.Q.M., and M.W.H.)

    Development of the morpholino gene knockdown technique in Fundulus heteroclitus : a tool for studying molecular mechanisms in an established environmental model

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Aquatic Toxicology 87 (2008): 289-295, doi:10.1016/j.aquatox.2008.02.010.A significant challenge in environmental toxicology is that many genetic and genomic tools available in laboratory models are not developed for commonly used environmental models. The Atlantic killifish (Fundulus heteroclitus) is one of the most studied teleost environmental models, yet few genetic or genomic tools have been developed for use in this species. The advancement of genetic and evolutionary toxicology will require that many of the tools developed in laboratory models be transferred into species more applicable to environmental toxicology. Antisense morpholino oligonucleotide (MO) gene knockdown technology has been widely utilized to study development in zebrafish and has been proven to be a powerful tool in toxicological investigations through direct manipulation of molecular pathways. To expand the utility of killifish as an environmental model, MO gene knockdown technology was adapted for use in Fundulus. Morpholino microinjection methods were altered to overcome the significant differences between these two species. Morpholino efficacy and functional duration were evaluated with molecular and phenotypic methods. A cytochrome P450-1A (CYP1A) MO was used to confirm effectiveness of the methodology. For CYP1A MO-injected embryos, a 70% reduction in CYP1A activity, a 86% reduction in total CYP1A protein, a significant increase in β-naphthoflavone-induced teratogenicity, and estimates of functional duration (50% reduction in activity 10 dpf, and 86% reduction in total protein 12 dpf) conclusively demonstrated that MO technologies can be used effectively in killifish and will likely be just as informative as they have been in zebrafish.This work was funded in part by the National Institute of Environmental Health Sciences through the Duke Superfund Basic Research Center (P42ES010356), the Boston University Superfund Basic Research Program (P42ES007381), and the Duke Integrated Toxicology and Environmental Health Program (ES-T32-0007031). Additional support was provided by a U.S. Environmental Protection Agency STAR fellowship awarded to C.R.F
    corecore